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Abstract 
Near-Fault earthquake ground motions have been observed in previous researches to have strikingly 
different response characteristics as compared to far-field earthquakes. Use of conventional measures 
to quantify the earthquake characteristics of such ground motions for use in structural design is 
therefore inappropriate. An understanding of the peculiar characteristics of such ground motions is 
established by scrutinizing the structural response to simple representative pulse motions consisting of 
single-cycle sinusoidal pulses. Elastic and inelastic response of a SDOF system and elastic response 
of an seimic isolated system are evaluated and the pulse period where the response peaks is found to 
depend on the response quantity being considered and the level of target ductility required in the case 
of inelastic response. Structural response to pulse motions is observed to peak away from the 
expected resonating system that has the same natural period as the period of the input pulse motion 
due to impulsive nature of the input motion that is incapable of establishing a resonating response. 
Based on the observations of this study, it is established that appropriate cosiderations should be made 
for the pulse period of earthquake for design in near-fault zones. 

1 Introduction 

Earthquake ground motions recorded in the vicinity of the fault are found to have significant energy 
content in the long period range. Velocity time-history of such records is characterized by a distinct 
low frequency velocity pulse. Response evaluation of such ground motions has been found to impose 
significantly different structural demands than expected from the conventional code based design 
(Mehrdad Sasani and Vitelmo V. Bertero 2000.) 

It is therefore imperative to take into account this difference for the design of structures located in 
near-fault zones. Identification of suitable input ground motion time histories in the case of response 
history analysis or the design spectrum for code defined response spectrum based design becomes 
crucial in such cases. Recent research on the response to near-fault earthquakes has shown significant 
dependence of structural response on pulse period of the near-fault ground motions (Attalla, Paret, 
and Freeman 1998.) This implies that the conventional record selection procedures based on ground 
motion prediction equations and hazard curves might be insufficient with regards to near-fault 
earthquakes. An appropriate structure specific identification scheme for near-fault ground motions is 
therefore necessary. 

In order to comprehensibly understand the characteristics of structural response to near-fault 
ground motions, a detailed study with simple structural models and representative velocity pulses is 
undertaken in this study. A number of previous researches on near-fault ground motion response have 
found simple velocity pulses to adequately approximate the response characteristics for the period 
range in the vicinity of the dominant pulse period of near-fault earthquake ground motions (Alavi and 
Krawinkler 2004.) This simplification in this study is therefore not unwarranted. Furthermore, study 
with simple representative pulses allows a clearer understanding of the response characteristics that 
may be missed when analyzing with more complex ground motions or structural systems. 

2 Representative pulse motions 

Near-fault ground motions generated as a result of the directivity of propagating fault posses most of 
the energy released during faulting in the form of a long period pulse. Zhai et al. (2013) found 
upwards of 30% of the ground motion energy to be contained in the velocity pulses of respective 
near-fault ground motions. And since the structural damage suffered during an earthquake is directly 
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related to the input energy of the ground motion, the representative velocity pulses offer an 
appropriate representation for evaluation of response to near-fault earthquakes. 

A number of simplified pulse models have been used in the past researches to simulate near-fault 
earthquake response. Simple pulses of various shapes including sinusoidal (Makris and Chang 2000; 
Mollaioli et al. 2006,) triangular (Alavi and Krawinkler 2004,) and rectangular (Sasani 2006) pulses 
have been used to approximate actual near-fault ground motions. While these studies established the 
equivalence of response to actual ground motions and simple pulses, no appropriate record selection 
strategy or relevant observations were made other than the fact that pulse period is the most important 
parameter in the defining pulse motions. 

Wavelet-analysis based pulses (Baker 2007; Mavroeidis and Papageorgiou 2003; Mukhopadhyay 
and Gupta 2013) have also been investigated to match more closely the actual velocity-time history of 
the near-fault earthquakes. These studies also established the importance of pulse period in the 
response to near-fault ground motions. 

Simple single-cycle sinusoidal velocity pulses are implemented in this study to represent the near-
fault earthquake ground motions. Simplicity of the shapes and the small number of parameters 
required to define the pulses allow for a comprehensive study of the response characteristics of these 
pulses. And the single cycle nature of these representative motions also ensures adequate 
representation of the impulsive characteristics of near-fault earthquake ground motions. 

The proposed velocity pulses are defined in terms of the peak pulse velocity ሺ ௣ܸሻ	and the pulse 
period ሺ ௣ܶ. ሻ  The velocity time history over the duration of the pulse may thus be expressed 
mathematically as: 

ሶݑ ୮ሺtሻ ൌ V୮ sin ቆ
ߨ2

௣ܶ
tቇ ݐ				 ∈ ሾ0, ௉ܶሿ ( 1 ) 

Over the domain of the pulse duration, acceleration and displacement time histories of the pulse 
motion may be calculated by differentiating and integrating respectively the velocity time history. 
Obtained expressions may be written as: 

ሷݑ ୮ሺtሻ ൌ
2π	V୮

௣ܶ
cos ቆ

ߨ2

௣ܶ
tቇ ݐ				 ∈ ሾ0, ௉ܶሿ ( 2 ) 

୮ሺtሻݑ ൌ
V୮ ௣ܶ

2π
ቆ1 െ cos ቆ

ߨ2

௣ܶ
tቇቇ ݐ				 ∈ ሾ0, ௉ܶሿ ( 3 ) 

 

 
Figure 1 Acceleration (left,) velocity (middle,) and displacement (right) time history for a 

representative pulse motion with pulse period ௣ܶ. Vertical axis is not on the same scale for 
all three graphs. 

A representation of pulse motions based on equations (1–3) is expressed in Figure 1. It must be noted 
that the assumuption of full cycle sinusoid in velocity time history results in different shapes in 
acceleration and displacement time histories, particularly the fact that the displacement time history is 
zero at the end of the cycle. This is particularly different from some previous studies (Suzuki et al. 
2010; Yasui et al. 2010) that were based on full cycle sinusoid in acceleration time history which 
results in a non-zero displacement value at the end of the pulse cycle. 
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The peak acceleration ሺܣ௣ሻ or displacement ሺܦ௣ሻ value may also used for pulse definition instead 
of ௣ܸ. The peak quantities may be obtained directly from the pulse definition of equations 2 and 3 as 
follows: 

௣ܣ ൌ
2π	V୮

௣ܶ
 ( 4 ) 

௣ܦ ൌ
V୮ ௣ܶ

ߨ
 ( 5 ) 

The input motions being used for evaluation are generated with varying pulse periods to understand 
the influence of pulse period on structural response. As defined by equations (1–3,) three sets of pulse 
motions can be generated with varying pulse period ሺ ௣ܶሻ and keeping the either of ܣ௣, ௣ܸ, or ܦ௣ as 
constant. It must be noted that even while one of the peak quantities is kept constant the other peak 
quantities vary significantly with the varying pulse period. 

3 Structural response analysis 

In order to understand the influence of pulse-like ground motions, structural response of a single-
degree-of-freedom system is studied in this section. Resposne analysis is carried out for linear elastic 
and bi-linear inelastic conditions. Response of a seismically isolated SDOF system is also studied.  
The following subsections describe in detail the system being evaluated for response, the response 
evaluation scheme and the observaions on the response to representative pulse motions. 

3.1 Linear elastic response 

Linear elastic response is evaluated for a single-degree-of-freedom system with damping at 5% of the 
critical. The governing equation of motion is solved numerically in MATLAB® using Newmark-ߚ 
method with ߚ ൌ 1/2 and ߛ ൌ 1/6. 

Psuedo-acceleration, pusedo-velocity and displacement response spectrum are generated for the 
three sets of ground motions as expressed in the previous section. To understand the influence of 
pulse period ሺ ௣ܶሻ  on the structural response, the spectral response quantities are plotted against 
normalized natural period ሺ ௡ܶ/ ௣ܶ. ሻ  A normalized natural period of 1  is thus representative of 
structures having natural period ሺ ௡ܶሻ  same as the input motion pulse period ሺ ௣ܶ. ሻ  The response 
spectrum plots thus generated are expressed in Figure 2. 

As is evident from these response spectrum plots, the response to the pulse motions peaks for 
structures with ௡ܶ/ ௣ܶ close to 1. But the exact peak is obtained slightly away from the ௡ܶ/ ௣ܶ value of 
1 and the peak location differs depending on the response quantity being considered. As expressed on 
the response spectrum plots for respective quantities, acceleration and velocity responses peak for 

௡ܶ/ ௣ܶ  value less than 1 (at 0.76 and 0.89 respectively) while the displacement response peaks for 

௡ܶ/ ௣ܶ value greater than 1 (at 1.55.) This behavior can be explained on account of the impulsive 
nature of input pulse motions. Since the input motion is only a single cycle impulse, it is not sufficient 
to develop resonant response in the system. This can be comprehensively illustrated by considering 
response to input motions with multiple pulses. Figure 3 shows the response spectrum for pulse 
motions having increasingly greater number of cycles ranging from single-cycle pulse to five-cycle 
pulse. As the number of cycles in the input motions increase, the resonant response rapidly builds up 
and the peak moves closer to ௡ܶ/ ௣ܶvalue of 1 corresponding to a resonance response. 

This observation is especially significant for the pulse motions with a larger pulse period (say 
 where response peak may be obtained for structures with significantly lower natural period (.ܿ݁ݏ	5
( 0.76 ൈ 5 ൌ .ܿ݁ݏ	3.8 ) than the period of the ground motion pulse. This also highlights the 
significance of considering the near-fault effects for shorter period structures as due to the impulsive 
nature of the input, response of shorter period structures is critical. This observation also emphasizes 
the significance of studying impulsive near-fault ground motions as their response characteristics 
differ significantly from ordinary far-field ground motions in this context. 

Another interesting observation from the set of response plots in Figure 1Figure 2 is the scaling of 
peak response values with input pulse period. For the set of input ground motions with common peak 
acceleration ሺܣ௣ሻ the peak acceleration response comes out to be the same irrespective of the input 
pulse period. Similar observation is made in terms of peak velocity and displacement response for 
input ground motion sets with common ௣ܸ and ܦ௣ respectively. 
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Figure 2 Psuedo-acceleration ሺܣ, ሻ pusedo-velocity ሺܸ, ሻ and displacement ሺܦ, ሻ response spectrum 
for pulse motions with vaying pulse periods ሺ ௣ܶሻ but contant peak acceleration (top row,) 
constant peak velocity (middle row,) and constant peak displacement (bottom row) 

 
Figure 3 Response spectrum for pulse motions with multiple cycles of pulses but constant pulse 

period ሺ ௣ܶሻ and peak velocity ሺ ௣ܸሻ 

It may also be noted that since the velocity response spectrum peak is obtained for ௡ܶ/ ௣ܶ value away 
from 1, use of velocity response spectra of near-fault ground motions (Mavroeidis and Papageorgiou 
2003; Alavi and Krawinkler 2004) for identification of pulse period ሺ ௣ܶሻ is error prone and may lead 
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to a lower pulse period value. In light of this observation, use of the identified velocity pulse for pulse 
period determination may be more accurate (Baker 2007; Zhai et al. 2013.) 

3.2 Bi-linear inelastic response 

Bi-linear inelastic response is calculated for a single-degree-of-freedom system with post-yield 
stiffness taken as 5% of the elastic and damping at 5% of the critical. The governing equation of 
motion is solved numerically in MATLAB® using Newmark-ߚ method with ߚ ൌ 1/2 and ߛ ൌ 1/6. 

Response is evaluated for the set of input motions described in Section 2. Yield force level of the 
bi-linear system is selected to obtain the displacement ductility ሺߤሻ as 5. Constant ductility response 
(acceleration, velocity and displacement) spectrum thus obtained are expressed in Figure 4. As 
explained in the discussion on elastic response, the response peaks are not obtained for ௡ܶ/ ௣ܶ value of 
1 owing to the impulsive nature of the input pulse. Interestingly though, the peaks for inelastic 
analysis are obtained at a lower value of ௡ܶ/ ௣ܶ than what was observed for the linear elastic case. The 
response peaks for acceleration, velocity, and displacement are obtained for a ௡ܶ/ ௣ܶ value of 0.55, 
0.75, and 0.96 respectively which corresponds to a stiffer system compared to the one observed in the 
elastic case. Furhter, as observed in Figure 5, the constant ductility response spectrums generated for 
varying ductility levels also show this effect as all the response quantities are observed to peak for 
lower nomalized period with increasing target ductility. 

 

 
Figure 4 Constant ductility ሺߤ ൌ 5ሻ  response spectrum for inelastic response to input pulse 

motions with varying pulse periods ሺ ௣ܶሻ but constant peak velocity ሺ ௣ܸ ൌ 1m/sሻ 

 
Figure 5 Constant ductility response spectrum for a pulse ground motion ሺ ௣ܶ ൌ 2s, ௣ܸ ൌ 1m/sሻ 

evaluated at multiple ductility levels ሺߤሻ 

3.3 Isolated system response 

Long period phenomenon of near-fault earthquakes is expected be especially detrimental to the 
performance of seismically isolated structural systems owing to the long design periods of isolated 
systems. In this section, response of a single-degree-of-freedom system isolated with a friction 
pendulum system (FPS) (Zayas, Low, and Mahin 1990) against representative pulse motions is 
evaluated to gain an insight into the impulsive response characteristics of isolated systems. 
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Fundamental equations of motion for FPS (Mokha et al. 1991) are solved solved numerically in 
MATLAB® using Newmark-ߚ method with ߚ ൌ 1/2 and ߛ ൌ 1/6. 

Acceleration, velocity and displacement response of the isolated structure evaluated for pulse 
motions with varying pulse periods. Unlike the response spectrum for a conventional SDOF system, 
response of the isolated system is calculated for a combination of natural peiod of the of the structure 
being isolated ሺ ௡ܶሻ  and period of isolation of the FPS used for seismic isolation ሺ ௕ܶ. ሻ  FPS is 
charaterized by friction coefficient ሺߤሻ at the sliding surface and radius of curvature ሺܴሻ of the slidng 
surface. ௕ܶ is dependent solely on the ܴ (Zayas, Low, and Mahin 1990) and is calculated as: 

௕ܶ ൌ ඨߨ2
ܴ
݃

 ( 6 ) 

Response is calculated with ߤ  as 0.08  while ௡ܶ  and ௕ܶ  being varied over to represent various 
structural configurations against pulse motions with constant pulse velocity ሺ ௣ܸ ൌ 1m/sሻ and varying 
pulse periods ሺ ௣ܶ ൌ 1s, 3s, and 5s.) Figure 6 expresses the calculated response as a contour plot 
against normalized ௕ܶ and ௡ܶ axes. Response values along the ௡ܶ/ ௣ܶ axis at zero ௕ܶ/ ௣ܶ represent the 
resposne of the SDOF system discussed previously in Section 3.1 on elastic response to pulse motions. 
Moving further along the vertical direction represents the resposne reduction or amplification offered 
by the isolator with corresponding isolator period ௕ܶ. For small ௕ܶ values, response amplification is 
observed over all ௡ܶ values as the isolation system is not really effective at small isolator periods. 
This amplification is especially significant around the ௡ܶ/ ௣ܶ  values for which peak response was 
observed in Section 3.1. Response amplification is also observed for ௕ܶ/ ௣ܶ values close to 1 over 

௡ܶ/ ௣ܶ values ranging from 1.5 and above. Considerable reduction in response is however observed 
when the ௕ܶ/ ௣ܶ values are larger than 2, even for the ௡ܶ/ ௣ܶvalues where the response was observed 
to peak in Section 3.1. This trend is observed in Figure 6 for either of the response quantities and is 
found to be equally valid for response to pulse motions with all pulse periods ሺ ௣ܶ. ሻ 

4 Conclusion 

Near-fault pulse motions have been observed to induce peculiar response in structures due to the 
impulsive characteristics of the input. Major observations for elastic, inelastic and isolated structure 
response may be expressed as follows: 

 Response to given pulse motions is more crucial for structures with natural period less 
than the pulse period (not the structures with same natural period as the period of the 
input pulse as the resonance phenomenon would suggest.) 

 Acceleration, velocity and displacement responses peak for different structural natural 
period ሺ ௡ܶሻ given the same input pulse motion. 

 Inelastic response to pulse motions peaks for different structural natural period ሺ ௡ܶሻ 
depending on the level of the target ductility ሺߤ. ሻ 

 Isolation systems designed with an isolator period ሺ ௕ܶሻ close to ௣ܶ  are ineffective in 
reducing strucural response but an isolator designed with ௕ܶ in a higher period range 
can result in considerable response reduction even for structural systems with ௡ܶ close 
the pulse period ௣ܶ. 

Based on these observations, important considerations from the point of view of record selection 
and strucute design for near-fault zones may be outlined as follows: 

 Pulse period and response parameter: Given the sensitivity of structural response to the 
ratio of structural period to pulse period ሺ ௡ܶ/ ௣ܶ, ሻ selection of ground motions with 
appropriate pulse period is crucial. This selection is further influenced by the choice of 
response quantity being evaluated as acceleration, velocity, and displacement peak for 
widely different values of ௡ܶ/ ௣ܶ	. 

 Target ductility: The level of target ductility that the system is designed for should also 
be taken into account for record selection. Response to the same ground motion pulse 
peaks for a stiffer system as the target ductility is increased. 
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Figure 6 Response spectrum plots of an isolated system (period of isolation, ௕ܶ) for input pulse 

motions ሺ ௣ܸ ൌ 1m/sሻ with varying pulse periods ( ௣ܶ ൌ 1s, top row; ௣ܶ ൌ 3s , middle 
row; ௣ܶ ൌ 5s, bottom row) and varying period of isolation ሺ ௕ܶሻ 
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